54 research outputs found

    Polarization dynamics in vertical-cavity surface emitting lasers

    Get PDF
    Experiments and their interpretation on polarization dynamics and polarization switching in vertical-cavity surface-emitting lasers operated in the fundamental transverse mode regime are reviewed. Important observations are switching events to a mode with the lower unsaturated gain and the existence of elliptically polarized dynamical transition states after the destabilization of the low-frequency polarization mode. The observations demonstrate the need to consider explicitly the phase properties of the optical field as well as nonlinear effects affecting polarization selection above threshold. Good qualitative agreement is found with a model which takes into account the spin degrees of freedom of the light field as well as of the carriers (`spin-flip model'), if the spin-flip rate is taken to be some tens of 10910^9~s1^{-1}. This constitutes a strong -- though indirect -- indication that spin dependent processes are important in polarization selection in the devices investigated

    Dissipative solitons in pattern-forming nonlinear optical systems : cavity solitons and feedback solitons

    Get PDF
    Many dissipative optical systems support patterns. Dissipative solitons are generally found where a pattern coexists with a stable unpatterned state. We consider such phenomena in driven optical cavities containing a nonlinear medium (cavity solitons) and rather similar phenomena (feedback solitons) where a driven nonlinear optical medium is in front of a single feedback mirror. The history, theory, experimental status, and potential application of such solitons is reviewed

    Fundamentals and applications of spatial dissipative solitons in photonic devices : [Chapter 6]

    Get PDF
    We review the properties of optical spatial dissipative solitons (SDS). These are stable, self‐localized optical excitations sitting on a uniform, or quasi‐uniform, background in a dissipative environment like a nonlinear optical cavity. Indeed, in optics they are often termed “cavity solitons.” We discuss their dynamics and interactions in both ideal and imperfect systems, making comparison with experiments. SDS in lasers offer important advantages for applications. We review candidate schemes and the tremendous recent progress in semiconductor‐based cavity soliton lasers. We examine SDS in periodic structures, and we show how SDS can be quantitatively related to the locking of fronts. We conclude with an assessment of potential applications of SDS in photonics, arguing that best use of their particular features is made by exploiting their mobility, for example in all‐optical delay lines

    Quantum enhanced SU(1,1) matter wave interferometry in a ring cavity

    Full text link
    Quantum squeezed states offer metrological enhancement as compared to their classical counterparts. Here, we devise and numerically explore a novel method for performing SU(1,1) interferometry beyond the standard quantum limit, using quasi-cyclic nonlinear wave mixing dynamics of ultracold atoms in a ring cavity. The method is based on generating quantum correlations between many atoms via photon mediated optomechanical interaction. Timescales of the interferometer operation are here given by the inverse of photonic recoil frequency, and are orders of magnitude shorter than the timescales of collisional spin-mixing based interferometers. Such shorter timescales should enable not only faster measurement cycles, but also lower atomic losses from the trap during measurement, which may lead to significant quantum metrological gain of matter wave interferometry in state of the art cavity setups

    Bistability conditions between lasing and non-lasing states for vertical-cavity surface-emitting lasers with frequency-selective optical feedback

    Get PDF
    This paper gives analytical treatment and experimental details on on/off-bistability in vertical-cavity surface-emitting lasers with frequency-selective feedback by a grating. In particular, the conditions for the coexistence of lasing and nonlasing states and an abrupt turn-on behaviour at threshold are derived using an envelope approximation. The theoretical and experimental results are in satisfactory agreement

    Femtosecond synchronously in-well pumped vertical-external-cavity surface-emitting laser

    Get PDF
    We demonstrate the first synchronously in-well pumped vertical-external-cavity surface-emitting laser (VECSEL). Depending on the cavity mismatch, laser pulses with a duration from 1 ps to 7 ps at a repetition rate of 76 MHz were generated directly from the laser at 860 nm. The application of extra-cavity pulse compression further shortened the pulse to a duration of 210 fs providing a peak power of 226 W

    Characteristics and possible applications of localized structures in an optical pattern forming system

    Get PDF
    We report on the observation of dissipative localized structures in an optical pattern{forming system. After an experimental and theoretical analysis of the mechanism which stabilizes these structures we focus on the demonstration of possible applications of localized structures for information processing

    Quantum enhanced SU(1,1) matter-wave interferometry in a ring cavity

    Get PDF
    Quantum squeezed states offer metrological enhancement as compared to their classical counterparts. Here, we devise and numerically explore a method for performing SU(1,1) interferometry beyond the standard quantum limit, using quasi-cyclic nonlinear wave mixing dynamics of ultracold atoms in a ring cavity. The method is based on generating quantum correlations between many atoms via photon-mediated optomechanical interaction. Timescales of the interferometer operation are here given by the inverse of photonic recoil frequency, and are orders of magnitude shorter than the timescales of collisional spin mixing–based interferometers. Such shorter timescales should enable not only faster measurement cycles but also lower atomic losses from the trap during measurement, which may lead to significant quantum metrological gain in matter-wave interferometry with state-of-the-art cavity setups

    Polarization properties of laser solitons

    Get PDF
    The objective of this paper is to summarize the results obtained for the state of polarization in the emission of a vertical-cavity surface-emitting laser with frequency-selective feedback added. We start our research with the single soliton, this situation presents two perpendicular main orientations, connected by a hysteresis loop. In addition, we also find the formation of a ring shaped intensity distribution, the vortex state, that shows two homogeneous states of polarization with very close values to those find in the soliton. For both cases above, the study shows the spatially resolved value of the orientation angle. It’s important to remark too the appearance of a non negligible amount of circular light that gives vectorial character to all the different emissions investigated

    Spin induced gigahertz polarization oscillations in vertical-cavity surface-emitting laser devices

    Get PDF
    Spin-controlled vertical-cavity surface-emitting lasers (VCSELs) have been intensively studied in recent years because of the low threshold feasibility and the nonlinearity above threshold, which make spin-VCSELs very promising for spintronic devices. Here we investigate the circular polarization dynamics of VCSELs on a picosecond time scale after pulsed optical spin injection at room temperature. A hybrid excitation technique combining continuous-wave (cw) unpolarized electrical excitation slightly above threshold and pulsed polarized optical excitation is applied. The experimental results demonstrate ultrafast circular polarization oscillations with a frequency of about 11 GHz. The oscillations last inside the first undulation of the intensity relaxation oscillations. Via theoretical calculations based on a rate equation model we analyze these oscillations as well as the underlying physical mechanisms
    corecore